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A finite element solution is presented for laminar 2-dimensional flow past a tixed and trans- 
versely oscillating cylinder. The solution of vortex street development behind the cylinder is 
obtained when the cylinder remains fixed. Then the cylinder which is assumed elastically 
mounted is allowed to oscillate in the cross-flow direction under the action of the fluctuating 
lift force. The grid system is translated with the cylinder at each time step and the field 
variables are interpolated to new grid locations. The computer results predict the lock-in 
phenomenon which occurs when oscillation frequency is near the natural vortex-shedding 
frequency. Particular attention was given to flow configuration, by means of streamlines, 
filament lines, and equi-vorticity lines. The effect of cylinder oscillation on lift and drag forces 
and separation angles is extracted from the numerical results. Computer results at Reynolds 
numbers 106 and 115 are in good agreement with experimental measurements conducted by 
the author. 0 1989 Academic Press, Inc 

INTRODUCTION 

The most common reason for flow-induced vibrations is the periodic shedding of 
vortices behind a body immersed in a flow stream. As the vortices are shed, they 
induce a periodic lift force at the shedding frequency and a periodic drag force at 
twice the shedding frequency. In practical situations these periodic forces become 
significant when their frequencies approach the natural frequency of the body. In 
this case, if the vibration damping coefficient is sufficiently low, it is very likely that 
vibrations will be induced on the body, in-line with the flow or in the cross-flow 
direction. Sometimes the vibration of the body is so large that it interferes with and 
controls the flow pattern. The fluid dynamic forces on the body are magnified and 
through a nonlinear interactive process the vibration of the body can be increased 
still further. In addition, the vortex shedding frequency diverges from that predicted 
by the Strouhal relationship and becomes equal to the body vibration frequency. 
This phenomenon is known as “lock-in” or “wake capture.” The lock-in effect is 
also observed when a bluff body is forced to oscillate in a uniform stream. In this 
case lock-in occurs when the driving frequency in the transverse direction 
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approaches the Strouhal frequency or the driving frequency in the in-line direction 
approaches twice the Strouhal frequency. 

Numerical studies of vortex shedding have considered the problem of uniform 
flow past fixed bluff bodies in two [ 141 or three [ 51 dimensions, employing finite 
difference or finite element schemes. Smith and Brebbia [4] used a fractional step 
technique for the solution of unsteady viscous flow past a circular cylinder, which 
increased stability of solution drastically. Moreover, numerical solution of flow past 
oscillating bodies [6-91 have emerged over recent years. The major difficulty 
associated with the numerical simulation of viscous flow around an oscillating 
cylinder is to describe boundary conditions at the moving boundary within a finite 
difference or finite element grid system. To overcome this difficulty, Hurlbut, 
Spaulding, and White [7, S] transformed the Navier-Stokes equations to a 
non-inertial frame of reference attached to the moving cylinder. 

In addition, the solution of viscous flow past a rotating cylinder was obtained by 
Badr and Dennis [lo] by means of Fourier analysis. Eaton [ 111 employed flow 
visualization techniques to investigate the wake of a circular cylinder using a finite 
element scheme while Jackson [ 121 used the finite elements to investigate the onset 
of vortex shedding in flow past bodies of various shapes. 

The solution technique followed herein for the problem of vortex street develop- 
ment behind a fixed cylinder is similar to that followed by Smith and Brebbia [3]. 
To extend the solution for the case of an oscillating cylinder, the finite element 
mesh was translated with the cylinder at each time step and vorticities were 
interpolated to new translated grid locations. 

NUMERICAL SOLUTION FOR FIXED CYLINDER 

The governing equations for 2-dimensional unsteady incompressible viscous flow 
can be written in terms of stream function Y and vorticity [ as 

V2Y= -( (1) 

ay ayaag a(va< -++-------vy=o, 
at ay ax ax ay (2) 

For the solution of the system of Eqs. (1) and (2) we consider the values of Y and 
{ at two successive time steps, n and n + 1. Thus the governing equations become 

V2%, = -in 
ai n+l ( aul,+, x, aul,+,x, ----= , 

at ay ax ax ay 
vv21 n+ . 

For the numerical solution the continuum was discretized into a number of 
3-node triangular elements. The finite element mesh is presented in Fig. 1. The mesh 
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FIG. 1. Finite element mesh. 

used by Smith and Brebbia [3] for the solution of a similar problem was taken as 
the guideline. The lines connecting the cylinder surface with the upper and lower 
boundaries are the equipotential lines for irrotational flow past a cylinder. 

Assuming that !Pri I is the approximating function for the stream function over 
the element (e), the application of Galerkin’s method to Eq. (3) yields 

1.i 4 
N!e) a2ci1 a2ylpL 

D(Y) ax2 + a$ +p dxdy=O, 
> 

i = 1, 2, 3, (5) 

where Ni” are the interpolation functions for the element (e). Integrating Eqs. (5) 
and expressing Yap, and [jp’ in terms of their nodal values for the element con- 
sidered as 

YFL, = [N-y” { yl>;;,, if’= [N]“’ {c};‘, 

we obtain the matrix relationship 

Kl” {y’);:, = [KJ@) {i}f’+ {R,}“‘, 

where 

aN. dN. aNi aN. 
kl,=rr,,.,(~~+~~)dxdq. 

kw = jJDI., Ni Nj dx dy 

(6) 

It is evident that if aY/Ylan = 0 everywhere in the boundary where a natural bound- 
ary condition is specified, the matrix {R,}“’ is discarded. 
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In a similar manner, the application of Galerkin’s method to Eq. (4) yields 

= 1.l ( 
NIe, ai2 1 I a~2 1 aik) avi 1 arlp) dx dy, i = 1, 2, 3. (7) 

D(Y) at ay ax ax ay > 

The integration of Eqs. (7) yields the matrix relationship 

[KJ”’ {[}$ + [K‘J”’ {l}fi, + {Rp= {R,}“‘, (8) 

where [ is the derivative of [ with respect to time. The matrices of Eq. (8) are given 
from 

h, = vk,ij 

k,, = hj 

rzi = 
alvff; 1 ap alu;; 1 ap 

ay ax ax ay 
dx dy 

rji = 

Expressing [ as 

Eq. (8) becomes 

[KJ”’ + L [KJ”’ 
At 1 (9) 

since the natural boundary condition for [ is ai/& = 0. 
The production of vorticity on the no-slip boundary is the pysical mechanism 

which dominates the problem. The vorticity along a no-slip boundary can be 
calculated from the formula 

( 
A 

= _ 
[ 

3(YB-PA)+i, 
An2 1 2 ’ (10) 

the parameters of which are explained in Fig. 2. 
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FIG. 2. Element adjacent to solid boundary 

The solution algorithm consists of the following steps: 

(a) Evaluation of stream function at time I + At from Eq. (6). The values of 
vorticities are those calculated in the previous time step or, in particular, the initial 
conditions. 

(b) The vorticity values at the no-slip boundary are corrected from Eq. (10). 
(c) The vorticities at t + At are calculated from Eq. (9). 

ADDITIONAL CALCULATIONS FOR FIXED CYLINDER 

The pressure distribution on the cylinder surface can be calculated from the 
relationship 

(11) 

where s and n are the tangent and normal directions on the cylinder surface at the 
point considered. 

The pressure distribution throughout the flow field can be calculated from 
Poisson’s equation 

a2P a9 dx2+z=-2p 
( 
au a0 au au 

ay 
----- ) 
ay ax axay > (12) 

which results from the Navier-Stokes equations. The application of Galerkin’s 
method to Eq. (12) for an element (e) yields 

= _ 2p jjD,<, Nj" (!$! ff!$) - f$ F) dx dy, i= 1,2, 3. (13) 
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The integration of Eqs. (13) yields 

[f&p) {P}@)= (&}@), 

where 
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(14) 

k,, = k,, 

r4i = 2p 
au(e) au(e) 

--_-- 
ax ay . 

The comparison of pressure distribution around the cylinder as calculated with 
both techniques is interesting. 

The shear stress on the cylinder is calculated from the formula 

zw= -PC,. (15) 

From the integration of shear stress and pressure distribution around the cylinder 
the shear and pressure forces on the cylinder can be calculated. 

APPLICATION FOR FIXED CYLINDER 

The numerical solution of flow past a fixed cylinder was attempted for Re = 115. 
The cylinder diameter was taken equal to 1.6 mm, the free stream velocity 0.072 m/s 
and the kinematic viscosity 9.95 . lo-‘m2/s (water at 19.5” C). 

In the beginning of computation, the fluid was instantaneously accelerated to the 
free stream velocity, while the vorticity was taken equal to zero throughout the 
domain. As the calculation proceeds, a pair of standing vortices is formed behind 
the cylinder continuously growing in size, while a small asymmetry is observed in 
the flow field behind the cylinder. Since the computer time required was too much, 
to accelerate the whole process the vorticity was increased artificially by a small 
amount at three mesh points just behind the cylinder. This was done at a time when 
the size of the standing vortices was almost stabilized. The computation continues, 
until the phenomenon becomes fully periodic. 

The streamlines at different time steps are depicted in Fig. 3. In Fig. 3a two 
vortices have already been shed from the cylinder while a third is formed behind the 
upper part of the cylinder. The symmetry of the streamlines with respect to the 
wake centre-line appearing in Figs. 3f and h reveals that the wake has become fully 
periodic. 

The equi-vorticity lines are presented in Fig. 4. The instantaneous centres of 
vortices are the points where the absolute value of voticity becomes maximum. 

The vorticity distribution over the cylinder is presented in Fig. 5 and the pressure 
distribution in Figs. 6 and 7. From Figs. 6 and 7 we conclude that the agreement 
of both techniques for the calculation of pressure distribution is fairly good. 



a) t = 0.656 set 

C) t = 0.776 set 

c) t = 0.836 set 

g) t = 0.926 set 
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b) t = 0.716 set 

d) t = 0.806 set 

f) t = 0.896 set 

h) t = 0.956 set 

FIG. 3. Streamlines for a fixed cylinder at Re = 115. 



NUMERICAL SOLUTION OF FLOW ABOUT CYLINDER 

t = 0.776 set 

441 

t = 0.836 set 

t = 0.896 set 

FIG. 4. Equi-vorticity lines for a fixed cylinder at Re = 115. 
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The vortex shedding frequency was calculated as 7.80 Hz. The same frequency at 
identical flow conditions was measured experimentally by the author as 7.40 Hz, 
yielding a Strouhal number (S=f,d/C’) equal to 0.164. In the numerical solution 
the solid boundaries are relatively close to the cylinder. To compensate for the 
proximity of solid boundaries Roshko [ 131 quotes for the correction of free stream 
velocity the formula derived by Allen and Vincenti 

(16) 

where U and U’ are the corrected and measured values of velocity and h is the 
channel width. From Eq. (16) the resulting value of U/V for d/h = 0.15 is 1.065. If 
we consider the velocity correction, the Strouhal number for s = 7.80 Hz equals 
0.162. Therefore, the difference between the measured and calculated values of the 
Strouhal number is only 1.5%. 

0 

OEGREES 

FIG. 5. Vorticity distribution for a fixed cylinder at Re = 115; I = 0.896s. 
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The drag and lift forces on the cylinder are presented in Fig. 9, together with the 
results for the oscillating cylinder case. The drag coefftcient when the size of the two 
standing vortices behind the cylinder was stabilized was calculated equal to 1.05. 
This value agrees with the calculations of Dennis and Chang [14] and 
Fornberg [15]. As the vortices are shed the drag coefficient increases until the 
phenomenon becomes fully periodic. In this case the drag coefficient becomes 
periodic at a frequency twice the vortex shedding frequency and mean value 1.23. 
The mean value of drag coefficient for the same Reynolds number was measured by 
Tritton [17] equal to 1.24. To correct for wall interference effects the formula 
derived by Allen and Vincenti and quoted by Roshko [ 131 was 

FIG. 

OEGREES 

6. Pressure distribution for a fixed cylinder at Re = 115; I = 0.836 s. 
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where C, is the corrected and cl, is the measured value of the drag coefficient. 
From the above formula, the corrected value of drag coefficient was calculated 
equal to 1.09, 11% lower than the experimental measurement. The periodic shed- 
ding of vortices induces a lift force on the cylinder which has the form of a growing 
oscillation, until the phenomenon becomes fully periodic, In this case the amplitude 
of lift coefficient is stabilized at a value equal to 0.18. This value agrees with the 
measurement of Tanida et al. [16] at the same Reynolds number. 

NUMERICAL SOLUTION FOR OSCILLATING CYLINDER 

As in the fixed cylinder case, the stream function at the n + 1 time step is 
calculated from Eq. (6). The boundary conditions for the stream function and vor- 
ticity at the outer boundaries remain the same as for a fixed cylinder, but they differ 

07 
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FIG. 7. Pressure distribution for a fixed cylinder at Re = 115; t = 0.896 s. 
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at the cylinder surface, due to its oscillation normally to the free stream. The fluid 
velocity at every point on the cylinder surface is equal to the cylinder velocity U,., 
as shown in Fig. 8. The boundary condition for the stream function on the cylinder 
surface becomes #P/an = uA. Since uA = U, cos 8, as shown in Fig. 8, the boundary 
condition on the cylinder surface becomes a Y/h = U, cos 0. Since a YJan # 0 on the 
cylinder surface, the matrix (R, }ce) of Eq. (6) cannot be discarded. The elements of 
{RI >@’ are given from the relationship 

r,;= 
I 

Ni u, COS e dS. 
,$e) 

The vorticity at the surface of the oscillating cylinder can be calculated with the 
following technique. The vorticity at point A on the cylinder surface is given from 
the relationship (Fig. 8) 

(17) 

The vorticity at point B, lying at a short distance from A on n axis is 

which yields 

Since 

a2yA 2’y, 2~~ ayA 2 
g=z-yp--- an An’ 

8f-h -=uu,,cOse 
an 

and %=L!ccos e 
as r 3 

(18) 

FIG. 8. Fluid velocity at cylinder surface. 
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Eq. (17) becomes 
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i,=$(Y,-Y,)+U, ;+; coso. 
( > (19) 

Therefore, the vorticity values on the cylinder surface are corrected from Eq. (19), 
while throughout the flow field at time t + At they are calculated from Eq. (9). 

A basic difficulty arising in the numerical solution of flow around moving boun- 

TJtiE [SECONDS1 

FIG. 9. Displacement, lift, and drag forces of cylinder at Re = 115. 
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daries is that these boundaries do not in general coincide with nodal points at the 
end of each time step. Since the coincidence of solid boundary and nodal points is 
necessary for the application of boundary conditions, the finite element grid system 
is translated at each time step with the cylinder. Since in the new time step the 
nodal points correspond to different points of the flow field from the nodal points 
of the previous time step, it is evident that vorticity values should be interpolated 
to new grid locations. 

+ LCUER SEPAPRTJON WCLE 

TJtlE (SECONDS1 

FIG. 10. Velocity and acceleration of cylinder and separation angles at Re = 115. 
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The pressure distribution on the cylinder surface is given from the formula 

(20) 

where Du/Dt is the substantial derivative of the velocity u. The u velocity on the 
cylinder surface is given from 

u=UrcosO 

- 1fJTd LIFT 

0 + SnEFy: LlrT 

‘0.96 
I I I I I , 

I. 3u 1.71 2.09 2.117 2.84 3.22 3.59 

& 
- 1OIRL ORFIG 

;: 
I PRESSURE ORAG 
+ SHWR ORAG 

w =- 

z 

if; 

1.34 1.71 2.09 2.117 2.811 3.22 3.59 

TltlE (SECDMISI 

FIG. Il. Displacement, lift, and drag forces on a cylinder at Re = 106. 



t = 1.959 set x/d = 0.20 

t = 1.995 set x/d = 0.00 

t = 2.030 set x/d = -0.20 

t = 2.067 set x/d = 0.00 t = 2.084 set x/d = 0.14 

FIG. 12. Streamlines for an oscillating cylinder at Re = 106. 

t = 1.978 set x/d = 0.14 

t = 2.012 set x/d = -0.14 

t = 2.048 set x/d = -0.15 
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which, differentiated with respect to time yields 

Du dU, 
Dt=drcOSe=A,cOse, 

wheie A,. is the cylinder acceleration. Therefore Eq. (20) becomes 

(gp -p”(~)w-pA,cose. 

The shear stress distribution on the cylinder is given by 

t = 1.959 set x/d = 0.20 t = 1 .978 set x/d = 0.14 

t = 1.995 set x/d = 0.00 

t = 2.030 set x/d = -0.20 

t = 2.067 set x/d = 0.00 

t = 2.012 set x/d = -0.14 

t = 2.048 set x/d = -0.15 

t = 2.084 set x/d = 0.14 

(21) 

(22) 

FIG. 13. Filament lines for an oscillating cylinder at Re = 106. 



APPLICATION FOR OSCILLATING CYLINDER 

The numerical solution of vortex-excited, cross-flow oscillations of a circular 
cylinder was performed at Re 115 and 106. The cylinder diameter and the kinematic 
viscosity of the fluid were assumed the same as for a fixed cylinder. The mass of the 
cylinder and the elastic support was taken equal to 35.91 gr, the spring stiffness 
69.48 N/m, and the damping coefficient 0.0048 N . s/m. The natural frequency of the 
cylinder f, was calculated from the relationship f, = (k/m)‘j2/2n equal to 7.008 Hz. 
Apart from the numerical solution, experimental investigation of the phenomenon 
was carried out for the same values of the various parameters, for the comparison 
of results. 

The first set of calculations was performed at Re = 115 (free stream velocity 
0.072 m/s). When the wake behind the cylinder became fully periodic 
(approximately 0.95s after the beginning of the calculation), the cylinder, which was 
held rigidly at a distance 0.6 mm from the equilibrium position, was suddenly 

FIG. 14. Equi-vorticity lines for an osdillating cylinder at Re = 115; I = 1.958 s, x/d = 0.38. 
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released. The lift and drag forces exerted on the cylinder plus the time-dependent 
cylinder displacement are depicted in Fig. 9. The amplitude of the cylinder oscilla- 
tion remains constant, equal to 38 % of the diameter. The amplitude of the lift coef- 
ficient when the cylinder oscillates increases drastically to 0.82, from 0.18 which is 
the value for a fixed cylinder. The mean value of the drag coefficient when the cylin- 
der oscillates remains equal to that for a fixed cylinder, although the fluctuation of 
the drag force grows bigger when the cylinder oscillates. The cylinder velocity and 
acceleration plus the boundary layer separation angles are depicted in Fig. 10. 
When the cylinder remains fixed the fluctuation of separation angles over one 
vortex shedding cycle is 3.1”, while, when the cylinder oscillates, it increases 
enormously to 55”. The frequency of the cylinder oscillation was calculated to be 
7.018 Hz, slightly higher than the cylinder’s natural frequency. The phase angle 
between the lift force and the cylinder displacement is 138”. 

! 0 66 120 IS0 240 300 360 

DEGREES 

FIG. 15. Vorticity distribution for an oscillating cylinder at Re = 106. 
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The second set of calculations was performed at Re = 106 (free stream velocity 
equal to 0.066 m/s). In this case the cylinder was released 0.28 mm from the equi- 
librium position. The results are presented in Fig. 11. It is obvious that the cylinder 
performs growing oscillations. The lift force exerted on the cylinder increases con- 
tinuously with the amplitude of oscillation, through a non-linear interactive process. 
The mean drag and the fluctuation of total drag force also increase as the amplitude 
of oscillation increases. The numerical results concerning cylinder displacement and 
fluid velocity for both Reynolds numbers are in very good agreement with 
experimental measurements conducted by the author at identical conditions [18]. 
The experimental investigation revealed that the amplitude of oscillation is stabi- 
lized approximately after 70 oscillation cycles. 

The streamlines at equal time intervals through one oscillation cycle are depicted 
in Fig. 12, and the filament lines in Fig. 13. The equi-vorticity lines are depicted in 

‘0 66 120 IS0 240 360 360 

DEGREES 

FIG. 16. Vorticity distribution for an oscillating cylinder at Re = 106. 
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Fig. 14. The point of intersection of the two small perpendicular lines drawn on the 
cylinder cross section, indicates the centre of the cross section when the cylinder 
passes from the equilibrium position. 

The.vorticity distribution over the cylinder at different time steps is presented in 
Figs. 15 and 16. The pressure distribution is depicted in Figs. 17 and 18, as 
calculated with both techniques. Unlike the fixed cylinder case, the agreement of the 
two methods is not good. The evaluation of pressure distribution from formula (22) 
depends strongly on the vorticity at the cylinder surface, which is given from 
boundary condition (19). This boundary condition seems to be less accurate than 
the corresponding one for a fixed cylinder, the error being reflected in the pressure 
distribution. Since drag and lift forces are very important for the investigation of 
the phenomenon, their values were calculated from the pressure distribution 
obtained from the solution of Poisson’s equation. 

FIG. 17. Pressure distribution for an oscillating cylinder at Re = 106; t = 1.978 s, x/d = 0.14. 
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1 + POISSLlN EQUfJTION 

0 I VORTICITT GRAOIENT 
N’ 
‘0 

I I 
60 120 1 I 360 
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FIG. 18. Pressure distribution for an oscillating cylinder at Re = 106; [ = 2.012 s, x/d = -0.14, 

CONCLUSIONS 

The finite element method has been applied for the solution of vortex street 
development behind a fixed and transversely oscillating circular cylinder at low 
Reynolds numbers. The translation of the finite element mesh with the cylinder at 
each time step and interpolation of field variables to new grid locaions has proved 
a successful technique for investigating the oscillating body and fluid interaction. 
The lock-in effect and the magnification of forces exerted on the oscillating cylinder 
are successfully predicted with this numerical simulation. 

A limitation imposed on the whole task is the computer time requirement. The 
CPU time required by the computer Sperry UNIVAC 1106 of the University of 
Thessaloniki was 8 h per oscillation cycle. The CPU time required per oscillation 
cycle by the computer IBM 4381 of the same university, which became available 
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after the initial submission of the present article, was 20 min. This means that a 
complete investigation of the phenomenon over a wide range of flow velocities in 
and around the lock-in region is difficult, even for the most powerful of modern 
computers. 
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